skip to main content


Search for: All records

Creators/Authors contains: "Wu, Judy I-Chia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    σ-Hole bonding interactions ( e.g. , tetrel, pnictogen, chalcogen, and halogen bonding) can polarize π-electrons to enhance cyclic [4 n ] π-electron delocalization ( i.e. , antiaromaticity gain) or cyclic [4 n + 2] π-electron delocalization ( i.e. , aromaticity gain). Examples based on the ketocyclopolyenes: cyclopentadienone, tropone, and planar cyclononatetraenone are presented. Recognizing this relationship has implications, for example, for tuning the electronic properties of fulvene-based π-conjugated systems such as 9-fluorenone. 
    more » « less
  2. null (Ed.)
    Photoacids like substituted naphthalenes (X = OH, NH 3 + , COOH) are aromatic in the S 0 state and antiaromatic in the S 1 state. Nucleus independent chemical shifts analyses reveal that deprotonation relieves antiaromaticity in the excited conjugate base, and that the degree of “antiaromaticity relief” explains why some photoacids are stronger than others. 
    more » « less
  3. Computed nucleus-independent chemical shifts (NICS), contour plots of isotropic magnetic shielding (IMS), and gauge-including magnetically induced current (GIMIC) plots suggest that polarization of the π-system of acridones may perturb the numbers and positions of Clar sextet rings. Decreasing numbers of Clar sextets are connected to experimental observations of a narrowing HOMO–LUMO gap and increased charge mobility in solid-state assemblies of quinacridone and epindolidione. 
    more » « less
  4. null (Ed.)
    Density functional theory computations suggest that formally non-aromatic organic dyes, like diketopyrrolopyrrole, naphthodipyrrolidone, indigo, and isoindigo, show increased [4 n ] π-antiaromatic character and decreased LUMO orbital energies upon hydrogen bonding, making them suitable molecular candidates for applications in n-type organic field effect transistors. 
    more » « less
  5. Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2] π-aromatic in the ground state, become [4 n + 2] π-antiaromatic in the first 1 ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o- Salicylic acid undergoes ESPT only in the “antiaromatic” S 1 ( 1 ππ*) state, but not in the “aromatic” S 2 ( 1 ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation. 
    more » « less
  6. Density functional theory computations and block-localized wavefunction analyses for 57 hydrogen-bonded base pairs document excellent linear correlation between the gas-phase association energies and the degree of aromaticity gain of paired bases ( r = 0.949), challenging prevailing views of factors that underlie the proposed electronic complementarity of A·T(U) and G·C base pairs. Base pairing interactions can polarize the π-electrons of interacting bases to increase (or decrease) cyclic 4 n + 2π electron delocalization, resulting in aromaticity gain (or loss) in the paired bases, and become strengthened (or weakened). The potential implications of this reciprocal relationship for improving nucleic acid force-fields and for designing robust unnatural base pairs are discussed. 
    more » « less
  7. Abstract

    Hydrogen bonding principles are at the core of supramolecular design. This overview features a discussion relating molecular structure to hydrogen bond strengths, highlighting the following electronic effects on hydrogen bonding: electronegativity, steric effects, electrostatic effects, π‐conjugation, and network cooperativity. Historical developments, along with experimental and computational efforts, leading up to the birth of the hydrogen bond concept, the discovery of nonclassical hydrogen bonds (CH…O, OH…π, dihydrogen bonding), and the proposal of hydrogen bond design principles (e.g., secondary electrostatic interactions, resonance‐assisted hydrogen bonding, and aromaticity effects) are outlined. Applications of hydrogen bond design principles are presented.

    This article is categorized under:

    Structure and Mechanism > Molecular Structures

    Structure and Mechanism > Reaction Mechanisms and Catalysis

     
    more » « less